eOFTWARE DEVELOPMENT

Package-oriented programming
treats mass-market applications
as large components to build
sophisticated software
development tools.

Giancarlo Succi, Witold Pedrycz,
Eric Liu, and Jason Yip

Package-Oriented
Software Engineering:
A Generic Architecture

Critiquing-Tool Basics

1

A

1520-9202/01/$10.00 © 2001 IEEE

ew methodologies and better tech-

niques are the rule in software engi-

neering, and users of large and com-

plex methodologies benefit greatly
from specialized software support tools. How-
ever, developing such tools is both difficult and
expensive, because developers must implement
a lot of functionality in a short time.

A promising solution is component-based soft-
ware development (CBSD), in particular,a CBSD
specialization called package-oriented program-
ming (Kevin Sullivan and colleagues, “Package-
Oriented Programming of Engineering Tools,”
Proc. 19th Int’l Conf. Software Eng., IEEE CS
Press, Los Alamitos, Calif., 1997.) POP treats reg-
ular mass-market applications (such as Microsoft
Office or Rational Rose) as large components,
taking advantage of the abundant functionality
and user familiarity that come with them. Often,
the right tool for a particular job exists as a full-
fledged application, but developers or managers
do not consider it a component in the traditional
sense. POP does away with this restriction.

POP fails, however, to satisfy all the require-
ments of large, complex soft-
ware engineering tasks. First,
it does not support multiuser
operation, and fields such as
domain analysis and require-
ments engineering frequently
involve more than one user.

Second, systems using POP

ave so far relied only on

architecturally compatible components, especially
those of Microsoft’s COM specification. POP-
based systems like Galileo and the ISI design edi-
tor generator use COM because applications that
fit their needs implement COM. Integrating with
COM applications is attractive, because the com-
munication mechanism is relatively easy to imple-
ment and you can achieve a very tight integration.
However, such a focus restricts integration to
applications primarily compatible with Microsoft
Windows; they must also be architecturally com-
patible with COM.

Third, traditional POP also seems to lack plat-
form integration. Today, a typical network is het-
erogeneous, consisting of a mix of Windows,
Linux, and other Unix machines. Each platform
provides different tools to accomplish different
tasks, and these tools must be integrated in a way
that lets them work on the same data remotely.

A more generic POP architecture would better
serve the development of software engineering
environments for large and complex methodolo-
gies. Such an architecture emerged from our
development experiences with two software engi-
neering research tools:

e Holmes, a domain analysis support tool; and
e Egidio, a unified-modeling-language-based
business modeling tool.

We found this particular architecture simple to
understand, easy to implement, and a natural can-
didate for a generic POP architecture.

March [April 2001 IT Pro

29

www.manharaa.com

30

SOFTWARE DEVELOPMENT

Critiquing-Tool Basics

Certain domains are more suitable for critiquing than others;
these include those with

¢ several alternative solutions,

e several risks and benefits associated with the various solutions,
and

¢ new solutions and knowledge that periodically alter the field.

Critiquing systems employ two strategies—active and passive—
to interact with users. An active critiquing system continuously
monitors user actions. As soon as it detects a problem, the system
makes suggestions. A passive system requires users to explicitly
invoke it to evaluate a partially completed design. Studies show
that users don’t activate passive systems early enough to prevent
designers from spending time on design solutions that are known
to be suboptimal or have problems.

Some existing tools incorporate critiquing systems. Lisp-Critic
lets Lisp programmers request improvements for their code. This
critiquing system suggests code transformations that make the code
easier to read or maintain. It also suggests ways to
make the code more machine efficient.

Developers have also built critiquing systems for
multimedia authoring. The eMMaC system helps
casual users harness the power of high-functionality
authoring tools. It critiques the use of color combina-
tions and color balance. The rules behind the system
come from a community of multimedia authoring tool
users.

The following example illustrates the usefulness of
a critiquing system in software design. In a domain-modeling sit-
uation, a designer works with UML class diagrams and could acci-
dentally introduce circular inheritance in a class hierarchy. The
critiquing system notices this flaw, informs the designer, and advises
removing the circular inheritance.

On the other hand, the system should not impede seasoned
designers in their work. Rather, it should be a passive guide, pro-
viding advice that can be followed or ignored as appropriate.

These needs are also applicable to other large
software engineering methodologies.

Today, large software development projects
involve a team of developers, managers,domain
experts, and market experts. All these stake-
holders have distributed and concurrent inter-
actions with the system. The issues of data and
change consistency are critical to successfully
support such a distributed, multiuser operation.

Most methodologies involve multiple, dif-
ferent yet interrelated, activities. For instance,
a typical domain analysis methodology would
include activities involving domain definition,
scoping, and some type of modeling. Users of
such a methodology would perform different
activities at different times. And, for each of
these activities, a suitable or superior tool is
probably already available. Thus, support for
integrating several software packages is cru-
cial. As a minimum, tool integration should
support data-level integration. This helps the
system keep data and changes consistent.

Users also would like a sense of traceability
between the activities—how
does changing data in one activ-
ity affect data presented in
another? This is especially im-
portant for a large and complex
methodology. For instance, a
requirements engineer might be
interested in knowing whether
changing a particular require-
ment will affect the test engi-
neers’ functional tests.

Users would also benefit greatly from sup-
port for semantic correctness. The system
should offer advice based on what the user is
doing. If users are inexperienced (or just care-
less), such a system could guide them away
from common pitfalls, even offering sugges-
tions on what they should do instead.

A typical example comes from system design.
Designers sometimes get carried away with a

TOOLS FOR LARGE AND COMPLEX
SOFTWARE ENGINEERING TASKS

There are several large and complex software engi-
neering fields that can benefit from some form of auto-
mated support. Tools for such software must support

multiple users and a distributed mode of operation,
many varied but interrelated activities,

traceability of data from different activities,
customizable support specific to each individual activity,
and

e quick integration of existing software packages.

IT Pro March [April 2001

class inheritance hierarchy. At some point, the tool should
advise designers to limit the depth of such a hierarchy
because historical data suggests that defects are more likely
to occur with a deeper hierarchy. Designers could change
the design and avoid potential problems down the road.

By using existing components, POP leads to quicker inte-
gration.

DEVELOPING SOFTWARE ENGINEERING
ENVIRONMENTS: OUR EXPERIENCE

There are two ways in which to use packages as compo-
nents; either

www.manaraa.com

e use one package as the platform on
which to build the new system or

e integrate multiple applications
tightly into a single system.

B Advice List

We used the second approach to

Figure 1. Holmes integrates our design-
critiquing system (Design Critic), FrontPage

Express, and Rational Rose.

< Rational Rose - ExternalModelE ditor46356.mdl
File Edt View Fomat Browse Repot Query Tools Addins Window Help

develop two systems using the same
architecture, each supporting a differ-
ent software engineering methodol-
ogy. Those systems and their
respective methodologies illustrate

INOC: The definition for this domain term is somew|*
RFC: The definition for this domain term is somewl
INOC: The definition for this domain term is somew|
RFC: The definition for this domain term is somewl
NOC: The definition for this domain term is somew|
RFC: The definition for this domain term is somew
NOC: The definition for this domain term is somew|
IRFC: The definition for this domain term is somew!

DR ' me 8RO AL T aanm

¥ Class Diagram: Logical View / Main

F ExtemaModelE ditordb355
(3 Use Case View
(3 Logical View
(3 Component View
[Deployment View
Model Propetties

[=]
stores
Measuring Entit
_—
0

b3 sm D%~

the importance of the requirements |[5 2 e
£ s : INOC: The definition for this domain term is somew| [E=———]
we've JHSt Outhned. RFC: The definition for this domain term is somewl
INOC: The definition for this domain term is somew|
P [
Holmes ¥, FrontPage Express - [C:\TEMP\ExteralHTMLE di
. . . (# Fie Edt View Go Inset Fomat Toos Table
Holmes is a domain analysis tool fomi W [oervovrone: B
- L« | 1
that supports Sherlock, a software mEF @O — el y B
. . o el press
engineering methodology. Sherlock DEH|SR| b8l - | amEe - To T] e BTN
. .. & fetrics4F 'ORTRAN: Language
has multiple participants and many Webtnerics is a modslar, expandable systern. Currently, it implements the client-server archiecture, some elics4FORTRAN. etics
l d e el d d d . f parser and some metrics. The market analysis suggests that Webmetrics is an innovative product with a =
related activities, divided into five o hal e el [waa | nomove || emt][

phases: domain definition, character-
ization, scoping, modeling, and frame-
work development.

Sherlock has some activities that
involve large designs and difficult
decisions, making semantic support an important aspect
of Holmes. For instance, Holmes will warn users about
adding terms that are duplicated, possibly with other
meanings in another activity. Holmes will also assist users
in determining a suitable product strategy to make a prod-
uct more competitive in a reasonable development time.

Domain objects for Sherlock are statically stored in XML.
This opens up possibilities for tools that work with data
offline. Furthermore, if the Holmes system should somehow
become obsolete or unusable in the future, the data would
remain usable because XML preserves structure.

In addition, some major activities in the methodology
deal with rich text and UML (Unified Modeling
Language) modeling. Creating custom text editing and
UML modeling tools would waste time. So Holmes is inte-
grated with Microsoft FrontPage Express (an HTML edi-
tor) and Rational Rose (a UML modeling tool) to reduce
development time. Figure 1 shows how the Holmes inter-
face displays these tools. We implemented the tools for the
remaining activities as Java Swing components.

Webmetrics.

Egidio

Egidio is a specialized tool for software business process
modeling and human resource management. Its method-
ology uses various types of diagrams, such as matrices and
UML class diagrams, to provide different views of the busi-
ness process. There are also multiple activities in which
i ivities, assignments, skills,

stom views for this

‘Webmetrics modules are similar in structure. Exploiting commonalities is a requisite for efficient devel
the modules. Domain analysis and engineering allows exploiting commonalities. o

The feasibility analysis has assessed that the analysis should go on and permeate all the develpoment phases of

of main Analysis Models -

fanguage
etrics
roject

tool, including the view shown in Figure 2, we used the
Holmes architecture to save time. In this way, our devel-
opment effort concentrated on developing the views and
widgets, instead of on the cross-communication among
tools. This strategy worked well, and we completed the sys-
tem in a short time.

A GENERIC ARCHITECTURE

The architecture used in our projects emphasizes
JavaSpaces, the Sun specification of a Java-based tuple
space (associative shared memory) based on Linda, a tool
to support blackboard architectures on distributed mem-
ory multiprocessors. A space is essentially a shared black-
board of objects. The concept of putting, matching, and
getting entries (the JavaSpaces equivalent of tuples) is sim-
ple, easy to program, and naturally fulfills the requirements
for multiuser, distributed operation. In addition, Sun pro-
vides a reference JavaSpace implementation that devel-
opers can use immediately.

JavaSpaces provides a general messaging mechanism via
event queues. Two classes of programs interact with the
space: repositories and tools. Design critiquing systems
provide support for semantic correctness.

Distributed event queues

Programmers can construct numerous distributed data
structures in the space. For our systems, we chose to imple-
ment distributed event queues, as shown in Figure 3. Since
a system consists of multiple types of data, each data type
roughly corresponds to an event queue.

March CApril 2001 IT Pro

31

www.manharaa.com

SOFTWARE DEVELOPMENT

Figure 2. Custom Java tool for Egidio.

ARP Snapshots Tool

the tool can perform all the operations
described under a transaction. If the
tool dies, the transaction will eventu-
ally time out and abort, and the sys-
tem would restore all entries. Java-

~ |Add ARP| Remove ARP| Share|
[Gertrude Objects
@ [persons

[} <Person=: Christian Bag
D <Person=: Tiziana Cosso

Spaces supports such a transaction
mechanism by default.

D <Person>: Paolo Predonz
[} <Person>: Giampiero Gra
[} <Person=: Alberto Silitti

JavaSpace entries also incorporate
the concept of expiring leases, which

[<Person>: Massimo Nerv|
@ Croles 7

[<Role=: Student

[} <Role=: PhD Student
@ 3 activities

[} <Activity=: Research

[} <Activity=: Egidio Develop
@ CIARPs

[ARP: Lips

[EPerson>:
K.+t Chrictian Bagnoli

performs

prevent event queue entries from tak-
ing up more and more space as the
queue grows. Since a queue’s purpose
is simply to notify observers of events,
it is reasonable to give each entry a
fairly short lease time. After the lease
expires, the system can perform
garbage collection for a queue entry
as required.

performs

| Tiziana Cosso

Tools communicate state changes by posting and listen-
ing to an appropriate event queue. This decoupled commu-
nication mechanism lets a tool communicate anonymously
with every other tool. In this way, the architecture supports
multiuser operation simply, since each user’s clients can
anonymously connect to the space and communicate state
changes. It is also very easy to add new tools to the system,
since all you have to do is attach the tool to the desired event
queues.

We chose event queues because they preserve the order
of event occurrences in the context of the system. They are
also easy to implement using collaborating entries in the
space. A tail entry tracks the queue’s current length, and
each element in the queue is an event entry in the space.
Figure 4 shows a simplified view of one such event queue.

For a tool to track changes to a particular data type, it
should first read the tail entry and note the current length
(in this case, n). From then on, it simply has to read event
entries n + 1,n + 2, ... and so on to be notified of future
events. Such a scheme is very easy to implement since
JavaSpaces supports blocking reads and entry matching
by attributes (the event positions, in this case).

To write changes to a particular data type, a tool takes
the tail entry (to prevent another participant from writing
to the queue at the same time), notes current length n, and
writes the tail entry back into the space. The tool then writes
anew event entry with the data change information. It also
writes a new position (n) into the space for other parties to

ould happen if the
ack into the space),

Repositories

Repositories track the state of cer-
tain types of data by “listening” to the
proper event queues. The system uses
the information gathered from the
queues to update the local data state in the repository.
Periodically, a repository writes the data state to an XML
document with a custom DTD (document type definition)
for long-term storage.

Using XML has numerous advantages. The data is human-
readable with an XML viewer or just a plain-text viewer.
XML is standardized, so developing software to work with
it takes minimal effort, especially since XML parsers (such
as the one at http://www.xmlsoftware.com/parsers/) are
available for many programming languages. This permits
offline, file-level integration, if necessary.

Holmes repositories use the Holmes Markup Language
(HML) format for storage. This format is just XML with a
DTD specifically targeting Sherlock’s data types. We used
HML to develop a quick-and-dirty prototype for a browser
that displays selected types of domain information in a
hyperbolic tree view (J. Lamping and R. Rao, “A Focus +
Context Technique Based on Hyperbolic Geometry for
Visualizing Large Hierarchies,” Proc. ACM SigCHI Conf.
Human Factors in Computing Systems, ACM Press, New
York, 1995). This view lets users see how closely other enti-
ties are related to an entity of interest based on the entity’s
size and proximity in the view; it also gives a sense of trace-
ability among entities. We parsed the XML data with a
standard Java-based XML parser, transforming the desired
datainto a tree data model that the browser could under-
stand.

Tools
Tools present and change one or more types of data. A
tool can connect to the space from anywhere and request

www.manharaa.com

the current state for a certain type of data by
posting a state request entry in the space. The
corresponding repository will notice the request
and post the current state as an entry in the
space. The tool then picks up this current state
to initialize its own local state. It can then post
and monitor changes to this particular type of
data on the corresponding event queue.

A tool can also be an aggregate of other tools,
launching specific tools only when necessary. In
Holmes, the domain definition tool handles all
the activities in that phase. It invokes custom
views and external applications (and their cor-
responding adapters) on demand.

With JavaSpaces support for data-level shar-
ing,you can integrate a variety of applications. To
be integrated, a tool must

e communicate with the JavaSpace and
¢ transfer data via specified event queues.

Java-based tools easily satisfy these require-
ments. For non-Java applications, programmers
must develop a tool adapter using Java. Adapters
serve two purposes: They handle the JavaSpace
and event queue interactions, and map data from
the application-specific format to the Java object
format that the system expects. Usually, the
application and its adapter use the Observer pat-
tern (Eric Gamma and colleagues, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994) to communi-
cate data changes.

The difficulties in building a tool adapter vary
with how tight the integration has to be, and what
language or environment the developer uses.
For very high-level integration (through a shared
file, for example), the effort and difficulty are minimal.

For lower levels of integration, the effort depends on the
target application. If the application uses a language that
can communicate with Java classes, developers can build
adapters fairly easily, provided the application’s source
code is available. Examples of these situations include
using JNI (Java Native Interface) with C++ and using
TclBlend with Tcl.

For very low-level integration, developers must devote
extra effort to interpreting fine-grained communication.
For example, integrating a COM component requires an
adapter that can understand, interpret, and translate the
component’s fired events into equivalent JavaSpace event
queue interactions.

The use of Java is key because it allows tools on any plat-

i i achine to participate in
d want to use the
omain framework

Change
notification

Figure 3. Distributed event queues

in JavaSpaces provide decoupled
communication.

bl (855 -l

Change l
notification
Data Y

state

Data Y JavaSpace

state request

Change |

r
=2 g |

Figure 4. JavaSpace-based event queue.

development phase. A DFD adapter tracks the state of the
shared source files by attaching itself to the appropriate
event queues in the JavaSpace. When a user edits a file, the
adapter asks Emacs to load it via an Emacs Lisp (Elisp)
function call. The user can now make code changes within
Emacs. Once the user finishes editing and is ready to com-
mit the changes, he invokes another Elisp function to notify
the adapter. The adapter will then post the code changes
to the appropriate event queue(s).

In this approach, if there is no existing application, you
can build an application in Java. Such an application can
take advantage of the tightest possible integration with the
adapter, which is also written in Java.

Using Holmes as an example, we integrated a variety of
applications—Web browsers for HTML viewing,
FrontPage Express for HTML editing, Rational Rose for
use-case and class diagram editing, and custom Java appli-
cations for displaying structured data in tree formats.

March [April 2001 IT Pro

33

www.manharaa.com

SOFTWARE DEVELOPMENT

Table 1. How our generic architecture satisfies essential
tool requirements.

Requirement

Architectural feature fulfilling this requirement

Multiuser support and distributed operation
to maintain data and change consistency

JavaSpaces and distributed event queues

Traceability Indirectly by integration of hyperbolic browser
Fast development via software package Java-based tool adapters to handle JavaSpace and event
integration queue interactions

Semantic support

Design critiquing system

Large and complex methodologies can be difficult to
fully grasp and work with. So users could likely benefit
from some sort of semantic support. Such support could
come in the form of a critiquing system, which answers
queries about whether a proposed solution is acceptable.
Such a system takes a problem description and a proposed
solution, and produces a critique of that proposed solu-
tion. The critique explains the proposed solution’s risks(s)
and proposes alternate solutions if possible.

Semantic support can also be built by using the idea of
design critics—simple software agents that monitor user
actions (data changes) and offer advice when appropri-
ate. Design critics can easily play an important part in our
generic architecture.

In our architecture, these critics are simply just another
type of tool that participates in the event queue interac-
tions. They detect changes in a specific type of data, evalu-
ate the action against some preset rules, and when neces-
sary, post advice on another dedicated event queue. A sep-
arate tool presents the advice to users in a list format.

There are many choices for implementing the critiquing
logic. In our implementation, we used the Prolog language
because Prolog clauses describe relationships very well.
Relationships can describe all our data models; for exam-
ple, a domain term has a definition, a product has a cer-
tain strategy, or a developer has procedural programming
skills.

The critiquing system adds substantial value to our pro-
posed architecture. Since the critiquing system is imme-
diately available for any application built on top of the
architecture, it can basically critique anything. In addition,
we implemented the critics in Prolog, a well-known high-
level language. This makes the power of critiquing avail-
able to more users.

ation frameworks.
ment) is a specifi-

Design critics to build into the system just like any other tool

cation from the ECMA standardization body (http://www.
ecma.ch), which is based on the monolithic Stoneman
model. It has strong support for data integration, and pro-
vides a message service for tool communication as well. How-
ever, this service is a low-level, Unix-like mechanism, which
makes sophisticated messaging passing more difficult.

Hewlett-Packard’s SoftBench is a commercial tool inte-
gration platform. The broadcast message server (BMS)
routes requests and event notifications between tools (such
as a development environment’s compilers, debuggers, and
editors). The messages follow an abstract tool protocol,
each of which has its own set of operations. When the BMS
receives a request, it checks to see if any tools are regis-
tered to handle that request. If none is registered, the BMS
will start a tool to handle this request, if one is available.

Our proposed generic architecture is a federation of
tools. Unlike PCTE, it requires no central server—a system
can function with just tools communicating changes with
each other through the event queues. This makes the sys-
tem more open and flexible to work with.

The event queue mechanism in our architecture is sim-
ilar to that of SoftBench. All requests and event notifica-
tions are communicated through “software buses.”
However, because Java-based event queues are object ori-
ented, programmers have more flexibility when they need
to extend the communication mechanisms. Specializing an
event queue entry does not affect the rest of the system—
the JavaSpace and the tools can continue working with the
entries as before.

Putting all the concepts together yields the proposed
architecture, which satisfies the essential requirements
listed earlier. Table 1 summarizes these requirements.

SAMPLE IMPLEMENTATION

Galileo is a POP-based fault tree analysis tool. It lets
users edit fault trees graphically, using an integrated Visio
component, or textually, using an integrated Microsoft
Word component. The application offers online help by
using an integrated Internet Explorer component.

To use the generic architecture, we first determined the

www.manharaa.com

granularity of the data that tools
had to communicate. Since a fault
tree has basic events, gates, and
connections, we can naively pick
these as the fault tree’s building
blocks. Event queues report
changes at the level of these build-
ing blocks. We also wrote a suitable
DTD to correspond with the object
model chosen for the fault tree.

Next, we determined the flow of
objects necessary for tools to com-
municate fault tree changes. When
a user changes a fault tree, the tool
posts that change on an unchecked-
element change queue. A main
engine reads this information from
the queue and checks for consis-
tency with the rest of the model. If
the change is allowed, the tool
places it onto a checked-element
change queue. Other tools would be
monitoring this queue, updating
their local states as needed. Galileo
also needed a repository to track the
current state of the fault tree model.

With this information, we can
start building the underlying sup-
port. Each type of fault tree build-
ing block becomes a subclass of a
JavaSpace entry. We then develop
classes for initializing and interact-
ing with the two main event queues.
If the main consistency engine is
implemented in Java, we simply use
the classes previously developed.
Otherwise, we write a consistency
engine adapter that handles the
queues and entries, and also inte-
grates with the concrete consis-
tency engine. We also need the
repository, which will periodically
spawn a new thread to write the
data to XML.

Next, we have to integrate Visio
and Word; each requires its own
tool adapter. As an example, the
Visio tool adapter has several tasks:

e Initialize, customize, and present
a Visio component through
COM using JNI.

e Request the fault tree’s current
state on start up, passing this
information to Visio.

Resources

“Package-Oriented Programming of Engineering Tools,” K.J. Sullivan
and colleagues, Proc. 19th Int’l Conf. Software Eng., IEEE CS Press,
Los Alamitos, Calif., 1997.

“Multiple Mass-Market Applications as Components,” D. Coppit and
K.J. Sullivan, Proc. 19th Int’l Conf. Software Eng.,IEEE CS Press, Los
Alamitos, Calif., 2000.

Holmes: A Domain Oriented Approach to Software Production, P. Pre-
donzani, G. Succi, and T. Vernazza, Artech House Inc., Norwood, Mass.,
2000.

Egidio: “Business Process Modeling with Objects, Costs, and Human
Resources,” G. Succi, P. Predonzani, and T. Vernazza, in System Model-
ing for Business Process Improvement, D. Bustard, P. Kawalek, and M.
Norris, eds.; Artech House Inc., Norwood, Mass., 2000.

ISI Visual Design Editor: “The ISI Visual Design Editor Generator,”
N.M. Goldman and R.M. Balzer, Proc. IEEE Symp. Visual Languages,
IEEE CS Press, Los Alamitos, Calif., 1999.

“The HP SoftBench Environment: An Architecture for a New Genera-
tion of Software Tools,” M.R. Cagan, HP Journal, June 1990, pp 36-47.
“An Overview of PCTE: A Basis for a Portable Common Tool Environ-
ment,” F. Long and E. Morris, Tech. Report CMU/SEI-93-TR-1, Carnegie
Mellon Univ., 1993.

“A Critic for LISP,” G. Fischer, Proc. 10th In?’l Joint Conf. Artificial
Intelligence, Morgan Kaufmann Publishers, San Francisco, 1987.
“Embedding Computer-Based Critics in the Contexts of Design,” G. Fis-
cher and colleagues, Proc. ACM InterCHI, ACM Press, New York, 1993.
“Critiquing: Effective Decision Support in Time-Critical Domains,” A.
Gertner, Tech. Report MS-CIS-94-35, Univ. of Pennsylvania, 1994.
Expert Critiquing Systems, Perry Miller, Springer- Verlag, New York, 1986.
“eMMaC: Knowledge-Based Color Critiquing Support for Novice Mul-
timedia Authors,” K. Nakakoji and colleagues, Proc. ACM Multimedia,
ACM Press, New York, 1995.

“Design Critiquing Systems,” J. Robbins, Tech. Report UCI-98-41, Univ.
of California, Irvine, 1998.

JavaSpaces: Principles, Patterns, and Practice, E. Freeman, Addison-
Wesley, Reading, Mass., 1999.

“JavaSpaces Specification, Revision 1.0 Beta,” Sun Microsystems, Palo
Alto, Calif., 1998; http://java.sun.com/products/javaspaces/specs/.

March [April 2001 1T Pro

35

www.manaraa.com

SOFTWARE DEVELOPMENT

e Monitor the checked-element change queue for data
changes. When change events occur, the adapter trans-
forms the information into COM calls to Visio.

e Write changes from Visio to the event queue. When the
Visio component commits changes, the adapter trans-
forms these changes into JavaSpace entries that go into
the unchecked-element change queue.

Adapting and assembling both components into the
architecture give us a fully functional system. To integrate
each additional tool, we follow a procedure similar to that
for Visio.

requirements we deem important for larger, more
complex software engineering activities, but at a
cost. Because application integration occurs at the data
level, it is much looser than what is possible with Microsoft
COM. COM-compatible applications can be integrated on
a procedural-call or event level. Furthermore, COM-com-

o ur generic architecture satisfies the additional

Nine good reasons why
close to 100,000 computing
professionals join the

IEEE Computer Society

Transactions on

= Computers

= Knowledge and Data Engineering

= Multimedia

s Networking

» Parallel and Distributed Systems

= Pattern Analysis and Machine Intelligence
» Software Engineering

= Very Large Scale
Integration Systems

n Visualization and

IEEE .3@

COMPUTER
SOCIETY

Computer Graphics

computer.org/publications/

IT Pro March [April 2001

patible applications are built so that some customization
can take place (to hide irrelevant program features, for
instance).

On the other hand, loosening the integration level has
the advantage of being more general. Relying on COM
means that you can integrate only certain applications run-
ning on specific platforms into the system (although
DCOM is now available on some other platforms; see
http://www.softwareag.com/entirex/download/free_down-
load.htm). Using data-level integration means that more
applications for different platforms can be integrated, as
long as a tool adapter is available. The effort involved in
writing the adapter is much less than that of writing a pro-
duction-quality tool from scratch.

There are also other issues to consider when integrating
applications in this generic manner. For example, what hap-
pens when changes take place while a user interacts with
an application that cannot respond to events? The tool
adapter has to implement a suitable strategy for resolving
the resulting differences.

In the end, our experiences show that the strength of this
architecture lies in its simplicity and ability to work with
multiple users and quickly integrate a wide variety of appli-
cations. It is definitely not perfect, but we present it as a
first step toward a more general package-oriented archi-
tecture to encourage further research in this area. m

Giancarlo Succi is a professor in the Department of Elec-
trical and Computer Engineering, University of Alberta.
Contact him at giancarlo.succi@ee.ualberta.ca.

Witold Pedrycz is a professor and Director of Computer
Engineering in the Department of Electrical and Computer
Engineering, University of Alberta. Contact him at
pedrycz@ee.ualberta.ca.

Eric Liu completed his MSc at the Department of Electri-
cal and Computer Engineering, University of Calgary, and
is currently a software engineer at ThoughtWorks. Contact
him at eliu@thoughtworks.com.

Jason Yip is a software engineer at ThoughtWorks. Contact
him at jcyip@thoughtworks.com.

This research has been partly supported by the Canadian Natural
Sciences and Engineering Research Council, the Government of
Alberta, the University of Alberta, the University of Calgary, and the
Alberta Software Engineering Research Consortium. We also thank
Milorad Stefanovic and Raymond Wong for reviewing early drafts.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manharaa.com

